Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 321
Filtrar
1.
PLoS Biol ; 20(1): e3001532, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35085231

RESUMO

Chronic inflammation is often associated with the development of tissue fibrosis, but how mesenchymal cell responses dictate pathological fibrosis versus resolution and healing remains unclear. Defining stromal heterogeneity and identifying molecular circuits driving extracellular matrix deposition and remodeling stands to illuminate the relationship between inflammation, fibrosis, and healing. We performed single-cell RNA-sequencing of colon-derived stromal cells and identified distinct classes of fibroblasts with gene signatures that are differentially regulated by chronic inflammation, including IL-11-producing inflammatory fibroblasts. We further identify a transcriptional program associated with trans-differentiation of mucosa-associated fibroblasts and define a functional gene signature associated with matrix deposition and remodeling in the inflamed colon. Our analysis supports a critical role for the metalloprotease Adamdec1 at the interface between tissue remodeling and healing during colitis, demonstrating its requirement for colon epithelial integrity. These findings provide mechanistic insight into how inflammation perturbs stromal cell behaviors to drive fibroblastic responses controlling mucosal matrix remodeling and healing.


Assuntos
Proteínas ADAM/imunologia , Colite/imunologia , Matriz Extracelular/metabolismo , Fibroblastos/imunologia , Mucosa Intestinal/imunologia , Células-Tronco Mesenquimais/imunologia , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Animais , Diferenciação Celular , Colite/induzido quimicamente , Colite/genética , Colite/patologia , Colo/imunologia , Colo/patologia , Matriz Extracelular/imunologia , Fibroblastos/patologia , Fibrose , Regulação da Expressão Gênica , Humanos , Inflamação , Interleucina-11/genética , Interleucina-11/imunologia , Mucosa Intestinal/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única , Dodecilsulfato de Sódio/administração & dosagem , Transcrição Gênica , Transcriptoma , Cicatrização/genética , Cicatrização/imunologia
2.
Biol Chem ; 402(2): 195-206, 2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33544472

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer with a median survival of only 15 months. To complement standard treatments including surgery, radiation and chemotherapy, it is essential to understand the contribution of the GBM tumor microenvironment. Brain macrophages and microglia particularly contribute to tumor angiogenesis, a major hallmark of GBM. ADAM8, a metalloprotease-disintegrin strongly expressed in tumor cells and associated immune cells of GBMs, is related to angiogenesis and correlates with poor clinical prognosis. However, the specific contribution of ADAM8 to GBM tumorigenesis remains elusive. Knockdown of ADAM8 in U87 glioma cells led to significantly decreased angiogenesis and tumor volumes of these cells after stereotactic injection into striate body of mice. We found that the angiogenic potential of ADAM8 in GBM cells and in primary macrophages is mediated by the regulation of osteopontin (OPN), an important inducer of tumor angiogenesis. By in vitro cell signaling analyses, we demonstrate that ADAM8 regulates OPN via JAK/STAT3 pathway in U87 cells and in primary macrophages. As ADAM8 is a dispensable protease for physiological homeostasis, we conclude that ADAM8 could be a tractable target to modulate angiogenesis in GBM with minor side-effects.


Assuntos
Proteínas ADAM/metabolismo , Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Patológica/metabolismo , Osteopontina/metabolismo , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Animais , Neoplasias Encefálicas/patologia , Proliferação de Células , Células Cultivadas , Glioblastoma/patologia , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Neovascularização Patológica/patologia
3.
Reprod Biol ; 20(4): 589-594, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32972883

RESUMO

The a disintegrin and metalloprotease (ADAM) family proteins comprise a group of membrane-anchored proteins. ADAM32 is expressed specifically in testis and is closely related phylogenetically to ADAM2 and ADAM3, which are known to be critical for fertilization in mice. To assess the biological role of ADAM32, we analyzed Adam32-mutant mice. We found that male mice lacking ADAM32 have normal fertility, testicular integrity, and sperm characteristics. ADAM32 was found to exist at lower levels than ADAM2 and ADAM3 in wild-type testis and sperm, respectively. The present study demonstrates that ADAM32 is dispensable for fertility and appears to be functionally unrelated to ADAM2 and ADAM3 in mice.


Assuntos
Proteínas ADAM/deficiência , Proteínas ADAM/fisiologia , Fertilidade/fisiologia , Expressão Gênica/fisiologia , Testículo/metabolismo , Proteínas ADAM/análise , Proteínas ADAM/genética , Animais , Cruzamento , Epididimo/anatomia & histologia , Feminino , Fertilinas/análise , Masculino , Glicoproteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/química , Espermatozoides/fisiologia , Testículo/anatomia & histologia , Testículo/química
4.
Arterioscler Thromb Vasc Biol ; 40(8): 1918-1934, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32522006

RESUMO

OBJECTIVE: ADAM (a disintegrin and metalloproteinase) 15-a membrane-bound metalloprotease from the ADAM (disintegrin and metalloproteinase) family-has been linked to endothelial permeability, inflammation, and metastasis. However, its function in aortic aneurysm has not been explored. We aimed to determine the function of ADAM15 in the pathogenesis of aortic remodeling and aneurysm formation. Approach and Results: Male Adam15-deficient and WT (wild type) mice (10 weeks old), on standard laboratory diet, received Ang II (angiotensin II; 1.5 mg/kg per day) or saline (Alzet pump) for 2 or 4 weeks. Ang II increased ADAM15 in WT aorta, while Adam15-deficiency resulted in abdominal aortic aneurysm characterized by loss of medial smooth muscle cells (SMCs), elastin fragmentation, inflammation, but unaltered Ang II-mediated hypertension. In the abdominal aortic tissue and primary aortic SMCs culture, Adam15 deficiency decreased SMC proliferation, increased apoptosis, and reduced contractile properties along with F-actin depolymerization to G-actin. Ang II triggered a markedly greater increase in THBS (thrombospondin) 1 in Adam15-deficient aorta, primarily the medial layer in vivo, and in aortic SMC in vitro; increased SSH1 (slingshot homolog 1) phosphatase activity and cofilin dephosphorylation that promoted F-actin depolymerization and G-actin accumulation. rhTHBS1 (recombinant THBS1) alone was sufficient to activate the cofilin pathway, increase G-actin, and induce apoptosis of aortic SMCs, confirming the key role of THBS1 in this process. Further, in human abdominal aortic aneurysm specimens, decreased ADAM15 was associated with increased THBS1 levels and loss of medial SMCs. CONCLUSIONS: This study is the first to demonstrate a key role for ADAM15 in abdominal aortic aneurysm through regulating the SMC function, thereby placing ADAM15 in a critical position as a potential therapeutic target for abdominal aortic aneurysm.


Assuntos
Proteínas ADAM/fisiologia , Angiotensina II/farmacologia , Aorta Abdominal/patologia , Aneurisma da Aorta Abdominal/etiologia , Proteínas de Membrana/fisiologia , Remodelação Vascular/efeitos dos fármacos , Proteínas ADAM/deficiência , Animais , Proliferação de Células , Células Cultivadas , Humanos , Inflamação/etiologia , Masculino , Proteínas de Membrana/deficiência , Camundongos , Músculo Liso Vascular/citologia , Miócitos de Músculo Liso/fisiologia , Trombospondina 1/análise , Vasoconstrição
5.
Cell Rep ; 29(3): 603-616.e5, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31618630

RESUMO

In higher vertebrates, cephalic neural crest cells (NCCs) form craniofacial skeleton by differentiating into chondrocytes and osteoblasts. A subpopulation of cephalic NCCs, cardiac NCCs (CNCCs), migrates to the heart. However, CNCCs mostly do not yield skeletogenic derivatives, and the molecular mechanisms of this fate restriction remain elusive. We identify a disintegrin and metalloprotease 19 (Adam19) as a position-specific fate regulator of NCCs. Adam19-depleted mice abnormally form NCC-derived cartilage in their hearts through the upregulation of Sox9 levels in CNCCs. Moreover, NCC-lineage-specific Sox9-overexpressing mice recapitulate CNCC chondrogenesis. In vitro experiments show that Adam19 mediates the cleavage of bone morphogenic protein (BMP) type I receptor Alk2 (Acvr1), whereas pharmacogenetic approaches reveal that Adam19 inhibits CNCC chondrogenesis by suppressing the BMP-Sox9 cascade, presumably through processing Alk2. These findings suggest a metalloprotease-dependent mechanism attenuating cellular responsiveness to BMP ligands, which is essential for both the positional restriction of NCC skeletogenesis and normal heart development.


Assuntos
Proteínas ADAM/metabolismo , Crista Neural/metabolismo , Transdução de Sinais , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Receptores de Ativinas Tipo I/genética , Receptores de Ativinas Tipo I/metabolismo , Animais , Proteína Morfogenética Óssea 6/metabolismo , Cartilagem/crescimento & desenvolvimento , Cartilagem/metabolismo , Cartilagem/patologia , Diferenciação Celular , Condrogênese , Embrião de Mamíferos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Miocárdio/citologia , Miocárdio/metabolismo , Crista Neural/citologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima
6.
Cell Commun Signal ; 17(1): 134, 2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31640732

RESUMO

BACKGROUND: Osteoarthritis (OA) is one of the most prevalent joint disease, and there are still no effective therapeutic agents or clinical methods for the cure of this disease to date. The degradation of cartilage extracellular matrix (ECM) is a major cause of OA. METHOD: IL-1ß was used to induce chondrogenic degradation. Q-PCR and Western blotting were used to detect mRNA and protein level, respectively. ELISA was used to detect the secreted TNF-α and IL-6 level. Immunofluorescence was used to detect the protein level of Aggrecan, Collagen II and ki67. TUNEL and flow cytometry were used to examine cell apoptosis of chondrocytes. ChIP and luciferase assay were used to study molecular gene regulation. Osteoarthritic animal model and Safranin-O staining were used to determine the in vivo OA phenotype. RESULTS: The expression of ADAM8 was up-regulated in osteoarthritic chondrocytes. Knockdown of ADAM8 suppressed the OA phenotype in the in vitro OA cell model. ADAM8 regulated OA progression through the activation of EGFR/ERK/NF-κB signaling pathway. Inhibition of Notch signaling suppressed OA phenotype in the in vitro OA cell model. Notch signaling regulated the gene expression of ADAM8 directly via Hes1. Notch1-ADAM8 positive feedback loop promoted the progression of OA in vivo. CONCLUSION: Notch1-ADAM8 feed-back loop regulates the degradation of chondrogenic extracellular matrix and osteoarthritis progression.


Assuntos
Proteínas ADAM/metabolismo , Condrócitos/patologia , Progressão da Doença , Matriz Extracelular/metabolismo , Retroalimentação Fisiológica , Proteínas de Membrana/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Receptor Notch1/metabolismo , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Animais , Linhagem Celular , Receptores ErbB/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , NF-kappa B/metabolismo , Fenótipo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Regulação para Cima
7.
Cell Biol Int ; 43(6): 593-604, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30958594

RESUMO

The aggrecanase ADAMTS5 (A Disintegrin and Metalloproteinase with ThromboSpondin type 1 motifs, member 5) and the cleavage of its substrate versican have been implicated in the development of heart valves. Furthermore, ADAMTS5 deficiency was shown to protect against diet-induced obesity, a known risk factor for cardiovascular disease. Therefore, in this study, we investigated the potential role of ADAMTS5 in cardiac function using ADAMTS5-deficient (Adamts5-/- ) mice and their wild-type (Adamts5+/+ ) counterparts exposed to a standard-fat or a high-fat diet (HFD). Eight-weeks-old Adamts5-/- and Adamts5+/+ mice were exposed to each diet for 15 weeks. Cardiac function and electrophysiology were analyzed by transthoracic echocardiogram and electrocardiogram at the end of the study. Cleavage of versican, as detected by the appearance of the DPEEAE neo-epitope on western blotting with protein extracts, was defective in the heart of HFD-treated Adamts5-/- as compared with Adamts5+/+ mice. ADAMTS5 deficiency led to statistically significant increases in diastolic posterior wall thickness (0.94 ± 0.023 vs. 0.82 ± 0.036 mm; P = 0.0056) and left ventricle volume (47 ± 4.5 vs. 31 ± 2.5 µL; P = 0.0043) in comparison to Adamts5+/+ mice, but only in animals on a HFD. Cardiac function parameters such as ejection fraction, fractional shortening, and stroke volume were unaffected by ADAMTS5 deficiency or diet. Electrocardiogram analysis revealed no ADAMTS5-specific changes in either diet group. Thus, in the absence of ADAMTS5, cleavage of versican in the cardiac extracellular matrix is impaired, but cardiac function, even upon exposure to a HFD, is not markedly affected.


Assuntos
Proteína ADAMTS5/deficiência , Coração/fisiologia , Miocárdio/metabolismo , Proteínas ADAM/deficiência , Proteínas ADAM/metabolismo , Proteína ADAMTS5/metabolismo , Animais , Doenças Cardiovasculares/metabolismo , Dieta Hiperlipídica , Testes de Função Cardíaca , Masculino , Camundongos , Camundongos Knockout , Obesidade/metabolismo , Versicanas/metabolismo
8.
Cardiovasc Res ; 114(13): 1752-1763, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29939250

RESUMO

Aims: Endothelial hyperpermeability exacerbates multiple organ damage during inflammation or infection. The endothelial glycocalyx, a protective matrix covering the luminal surface of endothelial cells (ECs), undergoes enzymatic shedding during inflammation, contributing to barrier hyperpermeability. A disintegrin and metalloproteinase 15 (ADAM15) is a sheddase capable of cleaving the ectodomains of membrane-bound molecules. Herein, we tested whether and how ADAM15 is involved in glycocalyx shedding and vascular leakage during sepsis. Methods and results: Dextran-150kD exclusion assay revealed lipopolysaccharide (LPS) significantly reduced glycocalyx thickness in mouse cremaster microvessels. Consistently, shedding products of glycocalyx constituents, including CD44 ectodomain, were detected with an increased plasma level after cecal ligation and puncture (CLP)-induced sepsis. The direct effects of CD44 ectodomain on endothelial barrier function were evaluated, which revealed CD44 ectodomain dose-dependently reduced transendothelial electrical resistance (TER) and caused cell-cell adherens junction disorganization. Furthermore, we examined the role of ADAM15 in CD44 cleavage and glycocalyx shedding. An in vitro cleavage assay coupled with liquid chromatography-tandem mass spectrometry confirmed ADAM15 cleaved CD44 at His235-Thr236 bond. In ECs with ADAM15 knockdown, LPS-induced CD44 cleavage and TER reduction were greatly attenuated, whereas, ADAM15 overexpression exacerbated CD44 cleavage and TER response to LPS. Consistently, ADAM15 knockout in mice attenuated CLP-induced increase in plasma CD44. Intravital and electron microscopic images revealed ADAM15 deficiency prevented LPS-induced glycocalyx injury in cremaster and pulmonary microvasculatures. Functionally, ADAM15-/- mice with better-preserved glycocalyx exhibited resistance to LPS-induced vascular leakage, as evidenced by reduced albumin extravasation in pulmonary and mesenteric vessels. Importantly, in intact, functionally vital human lungs, perfusion of LPS induced a significant up-regulation of ADAM15, accompanied by elevated CD44 in the effluent and increased vascular permeability to albumin. Conclusion: Together, our data support the critical role of ADAM15 in mediating vascular barrier dysfunction during inflammation. Its mechanisms of action involve CD44 shedding and endothelial glycocalyx injury.


Assuntos
Proteínas ADAM/metabolismo , Músculos Abdominais/irrigação sanguínea , Permeabilidade Capilar , Células Endoteliais/enzimologia , Glicocálix/enzimologia , Inflamação/enzimologia , Pulmão/irrigação sanguínea , Proteínas de Membrana/metabolismo , Mesentério/irrigação sanguínea , Microvasos/enzimologia , Sepse/enzimologia , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Animais , Modelos Animais de Doenças , Impedância Elétrica , Células Endoteliais/ultraestrutura , Feminino , Glicocálix/ultraestrutura , Receptores de Hialuronatos/metabolismo , Inflamação/genética , Inflamação/patologia , Inflamação/fisiopatologia , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microvasos/ultraestrutura , Sepse/genética , Sepse/patologia , Sepse/fisiopatologia
9.
Sci Rep ; 8(1): 9639, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29941981

RESUMO

Recent studies have revealed that newly emerging transformed cells are often eliminated from epithelia via cell competition with the surrounding normal epithelial cells. However, it remains unknown whether and how soluble factors are involved in this cancer preventive phenomenon. By performing stable isotope labeling with amino acids in cell culture (SILAC)-based quantitative mass spectrometric analyses, we have identified ADAM-like Decysin-1 (ADAMDEC1) as a soluble protein whose expression is upregulated in the mix culture of normal and RasV12-transformed epithelial cells. Expression of ADAMDEC1 is elevated in normal epithelial cells co-cultured with RasV12 cells. Knockdown of ADAMDEC1 in the surrounding normal cells substantially suppresses apical extrusion of RasV12 cells, suggesting that ADAMDEC1 secreted by normal cells positively regulate the elimination of the neighboring transformed cells. In addition, we show that the metalloproteinase activity of ADAMDEC1 is dispensable for the regulation of apical extrusion. Furthermore, ADAMDEC1 facilitates the accumulation of filamin, a crucial regulator of Epithelial Defense Against Cancer (EDAC), in normal cells at the interface with RasV12 cells. This is the first report demonstrating that an epithelial intrinsic soluble factor is involved in cell competition in mammals.


Assuntos
Proteínas ADAM/metabolismo , Transformação Celular Neoplásica , Células Epiteliais/patologia , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Animais , Técnicas de Cocultura , Cães , Filaminas/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Células Madin Darby de Rim Canino , NF-kappa B/metabolismo
10.
J Am Heart Assoc ; 7(2)2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29358191

RESUMO

BACKGROUND: Severe cardiac hypertrophy can lead to cardiac remodeling and even heart failure in the end, which is a leading cause of cardiovascular disease-related mortality worldwide. A disintegrin and metalloprotease-22 (ADAM22), a member of the transmembrane and secreted metalloendopeptidase family, participates in many biological processes, including those in the cardiovascular system. However, there is no explicit information on whether ADAM22 can regulate the process of cardiac hypertrophy; the effects that ADAM22 exerts in cardiac hypertrophy remain elusive. METHODS AND RESULTS: We observed significantly increased ADAM22 expression in failing hearts from patients with dilated cardiomyopathy and hypertrophic cardiomyopathy; the same trend was observed in mice induced by transaortic constriction and in neonatal rat cardiomyocytes treated by angiotensin II. Therefore, we constructed both cardiac-specific ADAM22 overexpression and knockout mice. At 4 weeks after transaortic constriction, cardiac-specific ADAM22 knockout, by the CRISPR/Cas9 (clustered regularly interspaced palindromic repeat (CRISPR)-Cas9) system, deteriorated the severity of cardiac hypertrophy in mice, whereas cardiac-specific ADAM22 overexpression mitigated the degrees of cardiac hypertrophy in mice. Similarly, altered ADAM22 expression modulated the angiotensin II-mediated cardiomyocyte hypertrophy in neonatal rat cardiomyocytes. After screening several signaling pathways, we found ADAM22 played a role in inhibition of protein kinase B (AKT) activation. Under the cardiac-specific ADAM22 knockout background, AKT activation was enhanced in transaortic constriction-induced mice and angiotensin II-stimulated neonatal rat cardiomyocytes, with a severe degree of cardiac hypertrophy. Treatment of a specific AKT inhibitor attenuated the transaortic constriction-enhanced AKT activation and cardiac hypertrophy in mice. CONCLUSIONS: The findings demonstrated that ADAM22 negatively regulates the AKT activation and the process of cardiac hypertrophy and may provide new insights into the pathobiological features of cardiac hypertrophy.


Assuntos
Proteínas ADAM/metabolismo , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/enzimologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Função Ventricular Esquerda , Remodelação Ventricular , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Animais , Animais Recém-Nascidos , Cardiomiopatia Dilatada/enzimologia , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Hipertrófica/enzimologia , Cardiomiopatia Hipertrófica/fisiopatologia , Estudos de Casos e Controles , Células Cultivadas , Modelos Animais de Doenças , Humanos , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/fisiopatologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Ratos Sprague-Dawley , Transdução de Sinais
11.
Sci Rep ; 7(1): 11670, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916789

RESUMO

Although A Disintegrin And Metalloproteinase 8 (ADAM8) is not crucial for tissue development and homeostasis, it has been implicated in various inflammatory diseases by regulating processes like immune cell recruitment and activation. ADAM8 expression has been associated with human atherosclerosis development and myocardial infarction, however a causal role of ADAM8 in atherosclerosis has not been investigated thus far. In this study, we examined the expression of ADAM8 in early and progressed human atherosclerotic lesions, in which ADAM8 was significantly upregulated in vulnerable lesions. In addition, ADAM8 expression was most prominent in the shoulder region of human atherosclerotic lesions, characterized by the abundance of foam cells. In mice, Adam8 was highly expressed in circulating neutrophils and in macrophages. Moreover, ADAM8 deficient mouse macrophages displayed reduced secretion of inflammatory mediators. Remarkably, however, neither hematopoietic nor whole-body ADAM8 deficiency in mice affected atherosclerotic lesion size. Additionally, except for an increase in granulocyte content in plaques of ADAM8 deficient mice, lesion morphology was unaffected. Taken together, whole body and hematopoietic ADAM8 does not contribute to advanced atherosclerotic plaque development, at least in female mice, although its expression might still be valuable as a diagnostic/prognostic biomarker to distinguish between stable and unstable lesions.


Assuntos
Proteínas ADAM/análise , Proteínas ADAM/deficiência , Aterosclerose/fisiopatologia , Proteínas de Membrana/análise , Proteínas de Membrana/deficiência , Placa Aterosclerótica/patologia , Animais , Antígenos CD , Artérias Carótidas/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica , Macrófagos/química , Camundongos Endogâmicos C57BL , Camundongos Knockout
12.
Blood ; 130(10): 1181-1188, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28768626

RESUMO

The discovery of a disintegrin-like and metalloproteinase with thrombospondin type 1 motif, member 13 (ADAMTS13) revolutionized our approach to thrombotic thrombocytopenic purpura (TTP). Inherited or acquired ADAMTS13 deficiency allows the unrestrained growth of microthrombi that are composed of von Willebrand factor and platelets, which account for the thrombocytopenia, hemolytic anemia, schistocytes, and tissue injury that characterize TTP. Most patients with acquired TTP respond to a combination of plasma exchange and rituximab, but some die or acquire irreversible neurological deficits before they can respond, and relapses can occur unpredictably. However, knowledge of the pathophysiology of TTP has inspired new ways to prevent early deaths by targeting autoantibody production, replenishing ADAMTS13, and blocking microvascular thrombosis despite persistent ADAMTS13 deficiency. In addition, monitoring ADAMTS13 has the potential to identify patients who are at risk of relapse in time for preventive therapy.


Assuntos
Púrpura Trombocitopênica Trombótica/fisiopatologia , Proteínas ADAM/deficiência , Humanos , Adesividade Plaquetária , Púrpura Trombocitopênica Trombótica/patologia , Púrpura Trombocitopênica Trombótica/terapia , Recidiva , Fatores de Risco , Fator de von Willebrand/metabolismo
13.
Am J Physiol Lung Cell Mol Physiol ; 313(3): L602-L614, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28596294

RESUMO

Alveolar leukocyte recruitment is a hallmark of acute lung inflammation and involves transmigration of leukocytes through endothelial and epithelial layers. The disintegrin and metalloproteinase (ADAM) 8 is expressed on human isolated leukocytic cells and can be further upregulated on cultured endothelial and epithelial cells by proinflammatory cytokines. By shRNA-mediated knockdown we show that leukocytic ADAM8 is required on monocytic THP-1 cells for chemokine-induced chemotaxis as well as transendothelial and transepithelial migration. Furthermore, ADAM8 promotes αL-integrin upregulation and THP-1 cell adhesion to endothelial cells. On endothelial cells ADAM8 enhances transendothelial migration and increases cytokine-induced permeability. On epithelial cells the protease facilitates migration in a wound closure assay but does not affect transepithelial leukocyte migration. Blood leukocytes and bone marrow-derived macrophages (BMDM) from ADAM8-deficient mice show suppressed chemotactic response. Intranasal application of LPS to mice is accompanied with ADAM8 upregulation in the lung. In this model of acute lung inflammation ADAM8-deficient mice are protected against leukocyte infiltration. Finally, transfer experiments of BMDM in mice indicate that ADAM8 exerts a promigratory function predominantly on leukocytes. Our study provides in vitro and in vivo evidence that ADAM8 on leukocytes holds a proinflammatory function in acute lung inflammation by promoting alveolar leukocyte recruitment.


Assuntos
Proteínas ADAM/metabolismo , Antígenos CD/metabolismo , Leucócitos/citologia , Leucócitos/metabolismo , Proteínas de Membrana/metabolismo , Pneumonia/metabolismo , Pneumonia/patologia , Proteínas ADAM/deficiência , Proteínas ADAM/genética , Doença Aguda , Animais , Antígenos CD/genética , Adesão Celular , Permeabilidade da Membrana Celular , Quimiotaxia , Citocinas/metabolismo , Edema/patologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Células HEK293 , Humanos , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Cicatrização
14.
Oncogene ; 36(35): 5058-5067, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28553955

RESUMO

ADAM-9 is a metalloproteinase expressed in peritumoral areas by invading melanoma cells and by adjacent peritumoral stromal cells; however, its function in stromal and melanoma cells is not fully understood. To address this question in vivo in a spontaneous melanoma model, we deleted ADAM-9 in mice carrying the hepatocyte growth factor (Hgf) transgene and knock-in mutation Cdk4R24C/R24C, demonstrated to spontaneously develop melanoma. Spontaneous melanoma arose less frequently in ADAM-9-deleted mice than in controls. Similarly reduced tumor numbers (although with faster growth kinetics) were detected upon induction of melanoma with 7,12-dimethylbenz[a]anthracene (DMBA). However, more lesions were induced at early time points in the absence of ADAM-9. Increased initial and decreased late tumor numbers were paralleled by altered tumor cell proliferation, but not apoptosis or inflammation. Importantly, significantly reduced lung metastases were detected upon ADAM-9 deletion. Using in vitro assays to address this effect mechanistically, we detected reduced adhesion and transmigration of ADAM-9-silenced melanoma cells to/through the endothelium. This implies that ADAM-9 functionally and cell autonomously mediates extravasation of melanoma cells. In vitro and in vivo we demonstrated that the basement membrane (BM) component laminin ß3-chain is a direct substrate of ADAM-9, thus contributing to destabilization and disruption of the BM barrier during invasion. In in vitro invasion assays using human melanoma cells and skin equivalents, depletion of ADAM-9 resulted in decreased invasion of the BM, which remained almost completely intact, as shown by continuous staining for laminin ß3-chain. Importantly, supplying soluble ADAM-9 to the system reversed this effect. Taken together, our data show that melanoma derived ADAM-9 autonomously contributes to melanoma progression by modulating cell adhesion to the endothelium and altering BM integrity by proteolytically processing the laminin-ß3 chain. This newly described process and ADAM-9 itself may represent potential targets for anti-tumor therapies.


Assuntos
Proteínas ADAM/deficiência , Quinase 4 Dependente de Ciclina/metabolismo , Melanoma/metabolismo , Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Animais , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina/genética , Feminino , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Masculino , Melanoma/genética , Melanoma/patologia , Melanoma Experimental/genética , Melanoma Experimental/metabolismo , Melanoma Experimental/patologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Transfecção
15.
Biosci Biotechnol Biochem ; 81(5): 1041-1050, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28058997

RESUMO

Mammals possess a unique signaling system based on the proteolytic mechanism of a disintegrin and metalloproteinases (ADAMs) on the cell surface. We found two genes encoding ADAMs in Aspergillus oryzae and named them admA and admB. We produced admA and admB deletion strains to elucidate their biological function and clarify whether fungal ADAMs play a similar role as in mammals. The ∆admA∆admB and ∆admB strains were sensitive to cell wall-perturbing agents, congo red, and calcofluor white. Moreover, the two strains showed significantly increased weights of total alkali-soluble fractions from the mycelial cell wall compared to the control strain. Furthermore, ∆admB showed MpkA phosphorylation at lower concentration of congo red stimulation than the control strain. However, the MpkA phosphorylation level was not different between ∆admB and the control strain without the stimulation. The results indicated that A. oryzae AdmB involved in the cell wall integrity without going through the MpkA pathway.


Assuntos
Proteínas ADAM/deficiência , Proteínas ADAM/genética , Aspergillus oryzae/citologia , Aspergillus oryzae/genética , Parede Celular/metabolismo , Proteínas Fúngicas/genética , Deleção de Genes , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Genômica , Cinética , Fosforilação , Polissacarídeos/metabolismo , Transcrição Gênica
16.
Sci Rep ; 6: 30451, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27458083

RESUMO

A disintegrin and metalloproteinase 8 (ADAM8) has been identified as a signature gene associated with moderate and severe asthma. Studies in mice have demonstrated that the severity of asthma can be reduced by either transgenic knock-out or by antibodies blocking ADAM8 function, highlighting ADAM8 as potential drug target for asthma therapy. Here, we examined the therapeutic effect of an ADAM8 inhibitor peptide (BK-1361) that specifically blocks cellular ADAM8 activity in ovalbumin-sensitized and challenged Balb/c mice. We found that BK-1361 (25 µg/g body weight) attenuated airway responsiveness to methacholine stimulation by up to 42%, concomitantly reduced tissue remodeling by 50%, and decreased inflammatory cells (e.g. eosinophils down by 54%)/inflammatory factors (e.g. sCD23 down by 50%)/TH2 cytokines (e.g. IL-5 down by 70%)/ADAM8-positive eosinophils (down by 60%) in the lung. We further verified that BK-1361 specifically targets ADAM8 in vivo as the peptide caused significantly reduced levels of soluble CD23 in wild-type but not in ADAM8-deficient mice. These findings suggest that BK-1361 blocks ADAM8-dependent asthma effects in vivo by inhibiting infiltration of eosinophils and TH2 lymphocytes, thus leading to reduction of TH2-mediated inflammation, tissue remodeling and bronchial hyperresponsiveness. Taken together, pharmacological ADAM8 inhibition appears as promising novel therapeutic strategy for the treatment of asthma.


Assuntos
Proteínas ADAM/antagonistas & inibidores , Asma/tratamento farmacológico , Asma/imunologia , Hiper-Reatividade Brônquica/tratamento farmacológico , Citocinas/metabolismo , Inflamação/patologia , Proteínas de Membrana/antagonistas & inibidores , Peptídeos Cíclicos/uso terapêutico , Células Th2/imunologia , Proteínas ADAM/deficiência , Proteínas ADAM/metabolismo , Animais , Antígenos CD/metabolismo , Asma/patologia , Asma/fisiopatologia , Brônquios/efeitos dos fármacos , Brônquios/patologia , Brônquios/fisiopatologia , Hiper-Reatividade Brônquica/genética , Hiper-Reatividade Brônquica/imunologia , Hiper-Reatividade Brônquica/fisiopatologia , Líquido da Lavagem Broncoalveolar , Contagem de Células , Modelos Animais de Doenças , Eosinófilos/efeitos dos fármacos , Eosinófilos/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/complicações , Proteínas de Membrana/deficiência , Proteínas de Membrana/metabolismo , Cloreto de Metacolina , Camundongos Endogâmicos BALB C , Camundongos Knockout , Peptídeos Cíclicos/farmacologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores de IgE/metabolismo , Solubilidade , Células Th2/efeitos dos fármacos
17.
Clin J Gastroenterol ; 9(2): 104-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26905311

RESUMO

Recent successive reports on acute pancreatitis-induced thrombotic thrombocytopenic purpura (TTP) have revealed that TTP-related microvascular damage is an aggravating factor of acute pancreatitis. Here, we report the case of a 26-year-old man diagnosed with acute pancreatitis due to high alcohol consumption. The patient was unconscious as he had taken an overdose of medication, and presented with fever and renal failure due to acute pancreatitis on admission. Although the pancreatitis subsequently improved, the symptoms were still observed; on the next day, he exhibited hemoglobinuria, anemia, and thrombocytopenia. Moreover, general blood examinations indicated the presence of schistocytes and reduced activity of ADAMTS13 (a disintegrin-like metalloproteinase with thrombospondin type 1 motif 13) to 47 %. Thus, the patient was diagnosed with TTP, and plasma exchange was performed. After the development of TTP, the acute pancreatitis recurred, but a severe pathogenesis was prevented by plasma exchange. Thus, ADAMTS13 activity may be useful for predicting a severe pathogenesis of acute pancreatitis. In ADAMTS13-deficient cases, plasma exchange may be an effective technique for preventing aggravation of acute pancreatitis.


Assuntos
Pancreatite/complicações , Púrpura Trombocitopênica Trombótica/complicações , Proteínas ADAM/deficiência , Doença Aguda , Adulto , Humanos , Masculino , Pancreatite/enzimologia , Troca Plasmática , Púrpura Trombocitopênica Trombótica/enzimologia , Púrpura Trombocitopênica Trombótica/terapia , Recidiva
18.
Anticancer Agents Med Chem ; 16(4): 414-23, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26179263

RESUMO

MicroRNAs (miRNAs) have been integrated into tumorigenic programs by regulating genes at post-transcriptional level. Long non-coding RNAs (lncRNAs) are novel targets for miRNAs. Here, we reported that miR-203 down-regulation was closely linked to advanced clinical features and poor overall survival (OS) of patients with hepatocellular carcinoma. We also confirmed that miR-203 and oncogene ADAM9 (a disintegrin and metalloproteinase 9)/oncogenic long non-coding RNA HULC (highly up-regulated in liver cancer) were inversely expressed in hepatocellular carcinoma (HCC) tissues or cell lines. More intriguingly, up-regulation of miR-203 diminished the expression of ADAM9 and HULC in HCC cancer cells. Over-expression of miR-203 could markedly inhibit cell proliferation, invasion and induce cell apoptosis. Furthermore, we identified that miR-203 modulated ADAM9 and HULC in a novel post-transcriptional regulatory mechanism. Over-expression of HULC partly rescued the miR-203-mediated antitumor effects. These results suggested that miR-203 played tumor suppressive roles by downregulating ADAM9 and HULC and indicated its potential application in cancer treatment.


Assuntos
Proteínas ADAM/deficiência , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Proteínas de Membrana/deficiência , MicroRNAs/genética , Metástase Neoplásica/genética , RNA Longo não Codificante/genética , Proteínas ADAM/genética , Apoptose , Carcinoma Hepatocelular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Feminino , Humanos , Neoplasias Hepáticas/genética , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , RNA Longo não Codificante/biossíntese
19.
Angiogenesis ; 19(1): 53-65, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26446156

RESUMO

The only documented activity of a subclass of ADAMTS proteases comprising ADAMTS2, 3 and 14 is the cleavage of the aminopropeptide of fibrillar procollagens. A limited number of in vitro studies suggested that ADAMTS3 is mainly responsible for procollagen II processing in cartilage. Here, we created an ADAMTS3 knockout mouse (Adamts3(-/-)) model to determine in vivo the actual functions of ADAMTS3. Heterozygous Adamts3(+/-) mice were viable and fertile, but their intercrosses demonstrated lethality of Adamts3(-/-) embryos after 15 days of gestation. Procollagens I, II and III processing was unaffected in these embryos. However, a massive lymphedema caused by the lack of lymphatics development, an abnormal blood vessel structure in the placenta and a progressive liver destruction were observed. These phenotypes are most probably linked to dysregulation of the VEGF-C pathways. This study is the first demonstration that an aminoprocollagen peptidase is crucial for developmental processes independently of its primary role in collagen biology and has physiological functions potentially involved in several human diseases related to angiogenesis and lymphangiogenesis.


Assuntos
Proteínas ADAM/metabolismo , Embrião de Mamíferos/metabolismo , Linfangiogênese , Neovascularização Fisiológica , Placenta/irrigação sanguínea , Proteínas ADAM/deficiência , Animais , Vasos Sanguíneos/patologia , Cartilagem/patologia , Colágeno/metabolismo , Edema/patologia , Perda do Embrião/metabolismo , Perda do Embrião/patologia , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Homozigoto , Imuno-Histoquímica , Fígado/embriologia , Fígado/patologia , Camundongos , Mutação/genética , Análise de Sequência com Séries de Oligonucleotídeos , Placenta/patologia , Gravidez , Processamento de Proteína Pós-Traducional , Pele/patologia , Fator C de Crescimento do Endotélio Vascular/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-26637781

RESUMO

Severe ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) deficiency causes thrombotic thrombocytopenic purpura (TTP), which is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and the absence of oliguric or anuric renal failure. However, some patients with this constellation of findings do not have ADAMTS13 deficiency, and some patients with ADAMTS13 deficiency have renal failure or relatively normal blood counts. Consequently, many investigators and clinicians have incorporated severe ADAMTS13 deficiency into the case definition of TTP. This change has facilitated the timely initiation of treatment for patients with atypical clinical features who otherwise would not be recognized as having TTP. Conversely, excluding severe ADAMTS13 deficiency focuses attention on the diagnosis and treatment of other causes of thrombotic microangiopathy that require different treatment. The rapid return of ADAMTS13 data is important to make the best use of this information.


Assuntos
Proteínas ADAM/sangue , Hematologia/métodos , Púrpura Trombocitopênica Trombótica/diagnóstico , Púrpura Trombocitopênica Trombótica/fisiopatologia , Proteínas ADAM/deficiência , Proteína ADAMTS13 , Artérias/patologia , Hematologia/tendências , Hemólise , Humanos , Doenças do Sistema Nervoso/complicações , Insuficiência Renal/complicações , Trombose/complicações , Trombose Venosa/complicações , Fator de von Willebrand/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...